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Conceptual Framework

Health outcomes = f(G, E, t): interplay of genes (G), environment (E), and time (t).

Biomarkers represent quantifiable intermediate endpoints.

Framework:

*Exposure - Internal Dose > Biological Effect > Disease Manifestation

Central to translational toxicology and precision public health.

We conceptualize health as a dynamic function of genotype, environment, and time. Biomarkers
occupy the causal continuum between external exposure and disease, allowing mechanistic
inference and early detection.
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The Exposome Paradigm

§ Coined by Wild (2005): “The cumulative measure of environmental influences and
biological responses throughout the lifespan.”

External exposome: pollutants, diet, microbiota,

J stressors.
Components:

Internal exposome: metabolites, hormones,
reactive intermediates.

% Analytical challenge: linking multi-level exposures to biological signals.

The exposome paradigm complements genomics by providing the environmental

* dimension of health. The complexity arises because exposures are dynamic,
interrelated, and non-linear — requiring multi-omics integration for biomarker
discovery.
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Classification of Biomarkers

Exposure biomarkers: indicate the presence of an exogenous agent (e.g., urinary metabolites of
benzene).

Effect biomarkers: represent early biological responses (e.g., oxidative DNA adducts).

Susceptibility biomarkers: reflect host factors modifying risk (e.g., GSTM1 polymorphisms).

Prognostic biomarkers: predict disease progression or resilience.

This taxonomy, endorsed by OECD and WHO, frames biomarker utility across the exposure-response
spectrum. In environmental health, distinguishing effect from susceptibility biomarkers is key for
causal interpretation.
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Mechanistic nways

Environmental exposures trigger cascades:

Oxidative stress > ROS generation = lipid, protein, DNA oxidation.
Inflammation - cytokine induction (IL-6, TNF-a).

Epigenetic modulation > DNA methylation, miRNA dysregulation.
Endocrine interference > receptor antagonism, transcriptional disruption.

Mitochondrial dysfunction > altered ATP production, apoptosis.

At the mechanistic level, multiple molecular networks converge. For example, air pollutants induce ROS, activating NF-kB and
AP-1 pathways that regulate proinflammatory genes. Such mechanistic biomarkers anchor toxicological plausibility.




[ FAINACI, 5
N IR LNIVERSTA
CALAERIA

MED(,
a7 FAVISAN %
s, LR .
2 3
b5 g ~
%
£ P L
5
& ;
C; b <
s —

Air Pollution as a Determinant

Primary pollutants: PM,.., NO,, SO,, ozone.

Cellular outcomes: oxidative DNA lesions (8-OHdG), lipid peroxidation (MDA).

Systemic biomarkers: CRP, fibrinogen, IL-6.

Epidemiological evidence: increased all-cause and cardiovascular mortality.

Ambient air pollution remains the most studied environmental determinant. Multi-cohort
analyses show that long-term PM,.. exposure correlates with elevated systemic inflammation
and endothelial dysfunction, measurable via CRP and IL-6 levels.
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Lead (Pb): neurotoxicity; blood Pb and 6-ALAD inhibition as biomarkers.

Cadmium (Cd): renal and bone toxicity; urinary B,-microglobulin, metallothionein induction.

Mercury (Hg): neurobehavioral biomarkers and hair Hg analysis.

Arsenic (As): methylated metabolites (MMA, DMA) in urine; oxidative and epigenetic effects.

Metals exhibit both direct toxicity and endocrine mimicry. Speciation analysis is critical—
arsenic methylation efficiency, for instance, modulates toxicity. Multi-omics profiling reveals
secondary impacts on mitochondrial and DNA repair pathways.
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Persistent Organic Pollutants (POPs)

K‘) Lipophilic, bioaccumulative, and resistant to degradation.

Dioxins, PCBs, PBDEs disrupt hormonal signaling.

Biomarkers: Altered thyroid axis biomarkers (T,/T,, TSH).
CYP1A1 gene induction via AhR activation.

POPs exemplify long-term body burden biomarkers. Their quantification in serum
lipid fractions provides integrative exposure indices, while AhR-related gene
expression serves as functional biomarkers of effect.

§ Serum concentrations (GC-MS validated).
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Endocrine-Disrupting Chemicals (EDCs)

CALAERIA

Phthalates, bisphenols, parabens: interact with estrogenic and androgenic
receptors.

Mechanisms:

e Competitive binding to nuclear receptors.
e Alteration of steroidogenic enzyme expression.

Biomarkers: urinary monoesters, hormone panels, receptor transactivation
assays.

EDCs induce subtle yet chronic endocrine perturbations. Multi-hormone profiling
combined with receptor reporter assays provides mechanistic linkage between
exposure and reproductive/metabolic dysfunction.
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Psychosocial and Physical Environment

Chronic stress - sustained HPA axis activation (cortisol dysregulation).
Noise pollution: elevated catecholamines, endothelial dysfunction biomarkers.
Heat exposure: altered electrolyte and oxidative profiles.

Urbanicity: combined exposures—air, noise, light, stress.

The nonchemical environment contributes significantly to biomarker variability. Chronic
psychosocial stress modulates inflammation and immune regulation, amplifying
susceptibility to physical pollutants — the “double jeopardy” effect.
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Molecular Omics Integration

2

Transcriptomics: differential gene expression in detoxification (CYP, GST families).

Proteomics: quantification of oxidative and inflammatory proteins (HSP70, SOD1).

Metabolomics: disruption in lipid peroxidation, amino acid, and xenobiotic pathways.

Epigenomics: site-specific DNA methylation at CpG loci (e.g., AHRR, F2RL3).

Omics approaches offer unbiased discovery of exposure signatures. Integration through

systems biology reveals pathway-level perturbations—bridging molecular biomarkers and
disease phenotypes.
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Oxidative Stress Network Biomarkers

Primary ROS markers: superoxide anion, hydrogen peroxide.

Secondary markers: 8-OHdG (DNA oxidation), MDA and F,-isoprostanes (lipid oxidation).

Antioxidant defenses: GSH/GSSG ratio, superoxide dismutase, catalase activity.

Redoxomics: global thiol-disulfide homeostasis.

Oxidative stress biomarkers represent a central, conserved response mechanism. Advances
in redoxomics and high-resolution mass spectrometry now permit multiplex quantification of
reactive intermediates and repair capacity.
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Inflammation and Immune Modulation

¢d

Acute phase reactants: CRP, serum amyloid A.

Cytokines: IL-6, TNF-a, IFN-y.

Cellular biomarkers: leukocyte differentials, activation markers (CD40L, ICAM-1).

Chronic inflammation: pathway to cardiometabolic and oncogenic progression.

Inflammatory biomarkers are integrative: they reflect immune perturbation across multiple

exposure domains. Persistent low-grade inflammation links environmental insults with
metabolic syndrome and carcinogenesis.
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Epigenetic Mechanisms and Biomarkers

DNA methylation: environmentally sensitive CpG sites (AHRR, LINE-1).
Histone acetylation/methylation: chromatin remodeling in response to EDCs.
miRNAs: miR-21, miR-146a as pollution-responsive regulators.

Transgenerational inheritance: stable epimutations beyond direct exposure.

Epigenetic markers represent the “molecular memory” of exposure. Unlike transient
biochemical signals, these modifications can persist for decades, influencing disease risk and
intergenerational health outcomes.
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Metabollc andl:ndocrme Biomarker

Networks
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Insulin signaling disruption: altered fasting insulin, HOMA-IR.

Thyroid dysregulation: T,/T,, TSH changes linked to POPs, EDCs.

Lipidomic markers: cholesterol oxidation products (oxysterols).

Metabolic syndrome: composite biomarker panels integrating adipokines (leptin,
adiponectin).

Environmental exposures often reprogram metabolic homeostasis. Multi-biomarker
panels capture systemic alterations better than single endpoints, reflecting the integrative
stress of the exposome.
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Epidemiological Integration

% Cohort studies: NHANES, EPIC, HBM4EU, MESA Air.

A Use of biobanked biospecimens for retrospective exposure reconstruction.

Multivariate regression

. .. Bayesian hierarchical models
|||l Statistical frameworks: g
Mixture analysis (weighted quantile sum

regression, BKMR)

Modern epidemiology employs mixture models to capture real-world exposures.

@ The combination of high-dimensional exposure and biomarker data challenges
traditional linear inference, requiring advanced computational tools.
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Data Integration and Causal Inference

Multi-omics integration: network-based modeling (WGCNA, pathway enrichment).

Causal mediation analysis: partitioning effects of exposure via biomarkers.

Machine learning: random forest, LASSO, and deep learning for biomarker signature discovery.

Big data platforms: exposome-biobank linkages (UK Biobank, Exposome-Explorer).

Data integration and causal inference form the frontier of biomarker research. Algorithms now detect
complex non-linear associations, improving prediction and revealing mechanistic pathways beyond
single-variable analysis.
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Ethical and Regulatory Dimensions

Ethical considerations: informed consent, genetic-environmental privacy, incidental
findings.

Regulatory uses: REACH (EU), EPA IRIS, OECD biomarker validation frameworks.

Equity implications: environmental justice, unequal exposure burdens.

Ethical and regulatory dimensions shape biomarker deployment. Population-level
biomonitoring must balance individual privacy with societal benefit, particularly for
communities disproportionately exposed to environmental hazards.
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High-throughput exposomics: non-target LC-HRMS for comprehensive exposure
screening.

Wearable biosensors: real-time physiological and pollutant monitoring.

Digital twins: simulation of environmental-biological interactions.

Precision prevention: individualized exposure-biomarker feedback loops.

The field is evolving toward predictive, personalized environmental health. Combining
continuous exposure monitoring with biomarker-based modeling may soon enable
adaptive public health interventions.
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Conclusion

Environmental factors induce multi-layered biological responses detectable
through biomarkers.

Integration of molecular, omics, and systems-level biomarkers enhances
exposure—effect mapping.

Future directions: harmonized global biomonitoring, data-driven inference, and
equitable application.

The biomarker framework transforms environmental science into actionable
health intelligence.

To conclude: biomarkers bridge molecules, mechanisms, and policy. As technology,
computation, and interdisciplinary science converge, biomarker-driven exposomics
will redefine environmental health risk assessment and prevention.
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