

Preclinical Safety Testing of Compounds Derived from Plants Grown in Polluted Environments

Evaluating the Toxicological Implications of Medicinal Plants from Contaminated Ecosystems

ERASMUS KA220-HED - Cooperation partnerships in higher education Project no. 2023-1-RO01-KA220-HED-000164767

Title: Partnership for innovation on the exchange of best practices and the design of joint collaborative initiatives at European level related to the awareness of the effects of contamination on human health

Acronym: INNO-SAFE-LIFE

Introduction

- Medicinal plants are a cornerstone of traditional and modern pharmacology.
- However, the environment in which plants grow greatly influences their chemical composition.
- Plants cultivated in polluted areas may absorb and accumulate harmful substances.
- These contaminants can compromise the safety of plant-derived compounds used in drug development.
- Hence, thorough preclinical safety testing is essential before advancing to clinical trials.

Why Study This?

With rising global pollution, many medicinal plants are now grown in contaminated environments.

Soil, water, and air pollutants may be taken up and metabolized by plants.

This could lead to the presence of toxins, mutagens, or carcinogens in therapeutic extracts.

Preclinical studies help ensure that potential drug candidates are not only effective but also safe for human use.

This research is crucial to avoid adverse effects, especially in herbal medicine consumers who assume "natural = safe."

Objectives

- **Screen** plant-derived compounds from polluted environments for contaminants.
- Evaluate their safety through in vitro and in vivo toxicological studies.
- **Determine** if environmental pollution alters therapeutic or harmful properties.
- **Support** regulatory frameworks for approving herbal and natural products.

Common Pollutants Affecting Plants

Heavy Metals:

- Lead (Pb), Cadmium (Cd), Arsenic (As), Mercury (Hg)
- Common sources: Industrial waste, mining, traffic emissions

Persistent Organic Pollutants (POPs):

- Pesticides (DDT), Polychlorinated biphenyls (PCBs), Dioxins
- Can bioaccumulate and persist in plant tissues

Air Pollutants:

- Sulfur dioxide (SO₂), Nitrogen oxides (NOx), Ground-level ozone (O₃)
- Affect plant growth and metabolite synthesis

Impact: Disruption in secondary metabolism, phytotoxicity, reduced therapeutic quality

Preclinical Safety Testing Workflow

Phytochemical Profiling:

Identify and quantify active and inactive constituents, look for anomalies due to pollution.

In Vitro Testing:

Assess cellular toxicity, mutagenicity, oxidative stress responses.

In Vivo Animal Testing:

Determine whole-body toxicity, organ-specific effects, behavior changes.

Toxicokinetic Studies:

Track absorption, distribution, metabolism, and excretion (ADME).

Histopathological Analysis:

Microscopic examination of tissues for damage or abnormalities.

Phytochemical Screening

Qualitative Tests:

• Detection of alkaloids, saponins, tannins, flavonoids, etc.

Quantitative Tests:

• HPLC, GC-MS, LC-MS for detailed profiling

Comparative Analysis:

• Compare samples from polluted vs. unpolluted areas

Contaminant Detection:

- ICP-MS or AAS for heavy metals
- ELISA or chromatography for pesticide residues

In Vitro Toxicity Tests

Cytotoxicity Assays:

MTT, Trypan Blue, LDH release

Measure cell viability and membrane integrity

Genotoxicity Assays:

Ames test for mutagenicity

Comet assay for DNA strand breaks

Oxidative Stress Markers:

Reactive oxygen species (ROS) generation

Glutathione levels, SOD and catalase activity

Benefits: Ethical, fast, scalable screening before animal testing

In Vivo Toxicity Studies

Acute Toxicity (LD₅₀):

• Single-dose study to identify lethal dose

Sub-Chronic and Chronic Toxicity:

- Repeated exposure over weeks/months
- Observe long-term effects on organ function

Endpoints Monitored:

- Weight gain/loss, food intake, behavior
- Biochemical markers (liver enzymes, kidney function)

Organ Histopathology:

• Liver, kidney, brain, spleen - checked for lesions or degeneration

Case Studies / Research Examples

Example 1: Ocimum sanctum (Holy Basil) grown near highways

- Elevated Pb and Cd levels found in leaves
- In vivo tests showed hepatotoxicity at doses considered safe for non-polluted samples

Example 2: Medicinal herbs from industrial zones

- · Contained pesticide residues above WHO permissible limits
- · Genotoxic effects observed in mouse models

Example 3: Traditional Chinese herbs grown near mining areas

· Bioaccumulation of arsenic led to renal and neurological toxicity in rodents

Regulatory Considerations

WHO Guidelines: Good Agricultural and Collection Practices (GACP)

OECD Guidelines: Standard toxicity testing protocols

ICH Guidelines: Preclinical safety pharmacology (S4), genotoxicity (S2)

Good Laboratory Practices (GLP): Ensure reproducibility, accountability, and integrity of data

Challenges & Limitations

Chemical Complexity:

Herbal extracts are mixtures, hard to isolate one compound

Environmental Variability:

Pollution levels change by season, location, plant part

Data Gaps: Limited studies on long-term low-dose exposure

Lack of Standardization:

Variation in testing protocols across labs and countries

Conclusions

Pollution can significantly alter the safety profile of medicinal plants.

Standard preclinical safety testing is vital for identifying hidden toxic risks.

Regulatory bodies and researchers must work together to enforce quality control.

This is essential for both pharmaceutical development and public health protection.

Future Directions

Use of Clean Cultivation Systems: Hydroponics, greenhouses, vertical farming

Pollution-Monitoring Tools: Real-time sensors, satellite imagery

Phytoremediation Awareness: Plants used to clean soil should not be used medicinally

Development of Guidelines: Clear thresholds for contaminant levels in herbal raw materials

Short test

What is a major concern when using medicinal plants grown in polluted environments?

- A. Increased nutritional value
- **B.** Enhanced therapeutic properties
- **C.** Accumulation of toxic pollutants
- D. Faster growth rate

Which of the following is commonly used for detecting heavy metals in plant samples?

- A. PCR
- **B.** ICP-MS
- C. ELISA
- **D.** Western Blot

Short test

What is the purpose of the MTT assay in preclinical safety testing?

- A. Detect DNA mutations
- B. Measure oxidative stress
- **C.** Determine cell viability
- **D.** Analyze protein content

Which organization provides Good Laboratory Practice (GLP) guidelines?

- A. UNESCO
- B. WHO
- C. OECD
- D. FDA

Short test

Why is in vivo testing necessary in preclinical safety assessments?

- A. It is cheaper than in vitro testing
- **B.** It eliminates the need for ethics approval
- **C.** It allows observation of whole-body effects and organ-specific toxicity
- **D.** It focuses only on genetic mutations