

Al and Digital Simulations in Predicting Toxicological Effects of Bioactive Compounds

ERASMUS KA220-HED - Cooperation partnerships in higher education Project no. 2023-1-RO01-KA220-HED-000164767

Title: Partnership for innovation on the exchange of best practices and the design of joint collaborative initiatives at European level related to the awareness of the effects of contamination on human health

Acronym: INNO-SAFE-LIFE

Introduction

Bioactive compounds from plants, microbes, or synthetic sources are central to drug discovery, nutraceuticals, and cosmetics

Traditional toxicology relies on **in vitro**, **in vivo**, and clinical studies expensive, time-consuming, ethically complex

Al and computational toxicology offer powerful tools to predict safety risks early in the development pipeline

Goal: Use AI and simulations to reduce cost, time, and animal testing, while increasing accuracy

What Are Bioactive Compounds?

Naturally occurring or synthetically produced substances with biological activity

Found in plants, foods, marine organisms, fungi, etc.

Roles: antioxidants, anti-inflammatory agents, anticancer drugs, antimicrobials

Toxicological risks: genotoxicity, hepatotoxicity, endocrine disruption, etc.

Diverse chemical structures and complex biological pathways

Limited availability of toxicological data for novel or rare compounds

Species variability: animal models don't always translate to human outcomes

Regulatory push for non-animal testing alternatives (EU REACH, US EPA)

Al algorithms can analyze largescale chemical, genomic, and toxicological data

Machine learning (ML) and deep learning (DL) models identify patterns in structure-toxicity relationships

Predict outcomes such as:

Mutagenicity Carcinogenicity Skin sensitization Acute/chronic toxicity

Digital Simulations & Modeling Approaches

QSAR (Quantitative Structure-Activity Relationship):

Correlates molecular features with toxicity

PBPK Models (Physiologically Based Pharmacokinetic

Modeling): Simulates ADME processes in silico

Molecular docking & dynamics simulations: Assess interaction with biological targets (e.g., DNA, enzymes, receptors)

Virtual organs / Organ-on-a-chip simulations: Model tissuespecific toxicity digitally

ProTox-II: Predicts organ toxicity, LD50, pathways

Derek Nexus: Knowledge-based expert system for chemical toxicity

ToxCast & Tox21: Large toxicology databases used to train AI models

DeepTox: Deep learning framework for toxicity prediction from molecular structures

Applications in Drug and Product Development

Early screening of natural products and novel molecules for toxicity red flags

Cosmetic ingredient safety assessment (e.g., skin sensitization prediction)

Food and nutraceuticals: Predicting allergenicity and metabolic effects

Environmental impact: Assessing bioaccumulation and ecotoxicity potential

Case Studies

Curcumin analogs: AI-based QSAR models predicted low hepatotoxicity with high anti-inflammatory activity

Marine-derived compounds: Deep learning used to identify neurotoxic potential before extraction and testing

Green tea catechins: In silico metabolism simulation helped assess long-term toxicity risk for supplements

Advantages of AI in Toxicology

Faster predictions than lab testing

Lower costs and fewer animal studies

Ability to handle large, diverse chemical datasets

Supports **personalized safety profiling** and precision medicine

Limitations & Challenges

DATA QUALITY AND AVAILABILITY
LIMIT MODEL ACCURACY

BLACK-BOX NATURE OF SOME AI MODELS REDUCES INTERPRETABILITY

NOT ALL BIOLOGICAL RESPONSES CAN BE SIMULATED (E.G., IMMUNE INTERACTIONS)

REGULATORY BODIES STILL CAUTIOUS ABOUT REPLACING TRADITIONAL METHODS ENTIRELY

Future Trends

Integration of **multi-omics data** (genomics, proteomics, metabolomics) into toxicity prediction

Use of generative AI to design safer bioactive compounds

Increasing adoption of **hybrid models** combining AI, lab data, and human clinical insights

Movement toward **regulatory acceptance** of in silico toxicology

Conclusion

Al and digital simulations are transforming how we assess the **safety of bioactive compounds**

They offer rapid, cost-effective, and scalable solutions for modern toxicology

With continued advances in **data science**, **molecular biology**, **and computing**, these tools will become central to safer, more sustainable innovation in health and wellness